A linear (ordinary) differential equation is an ODE of the form

$$f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \dots + f_1(x)y' + f_0(x)y = g(x),$$

where f_i and g are functions of the dependent variable x. If g(x) = 0, then this is called a **homogeneous** linear DE; otherwise, it is called **non-homogeneous**. If all of the function f_i are constants, then this is called a **constant coefficient** linear DE.

Solutions to Linear ODEs

Theorem 7.4: For $1 \le j \le n$, suppose that f_j is a function in $\mathcal{C}^{\infty}(\mathbb{R})$.

The space of all solutions to

$$f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \dots + f_1(x)y' + f_0(x)y = 0 \quad (*)$$

is a vector subspace of $\mathcal{C}^{\infty}(\mathbb{R})$.

Suppose also that g is a function in C[∞](ℝ). Then the space of all solutions to

$$f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \dots + f_1(x)y' + f_0(x)y = g(x) \quad (**)$$

is either the empty set, or is equal to $y_p + y_h$, where y_p is any particular solution of (**) and y_h is the full set of solutions to the associated homogeneous equation (*).

• Theorem 7.5: Consider the IVP

$$f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \dots + f_1(x)y' + f_0(x)y = g(x)$$
$$y(x_0) = c_0, y'(x_0) = c_1, \dots, y^{(n-1)}(x_0) = c_{n-1},$$

where every f_j and g are in $\mathcal{C}^{\infty}(\mathbb{R})$. This IVP has exactly one solution defined on all of \mathbb{R} .

• **Theorem 7.6:** Let each f_j be a function in $\mathcal{C}^{\infty}(\mathbb{R})$. Then the set of all solutions to the homogeneous linear ODE

$$f_n(x)y^{(n)} + f_{n-1}(x)y^{(n-1)} + \dots + f_1(x)y' + f_0(x)y = 0$$

is a vector subspace of $C^{\infty}(\mathbb{R})$ of dimension *n*.